
Selection Sort-

 Selection sort is one of the easiest approaches to sorting.

 It is inspired from the way in which we sort things out in day to day life.

 It is an in-place sorting algorithm because it uses no auxiliary data structures
while sorting.

How Selection Sort Works?

Consider the following elements are to be sorted in ascending order using
selection sort-

6, 2, 11, 7, 5

Selection sort works as-

 It finds the first smallest element (2).

 It swaps it with the first element of the unordered list.

 It finds the second smallest element (5).

 It swaps it with the second element of the unordered list.

 Similarly, it continues to sort the given elements.

As a result, sorted elements in ascending order are-

2, 5, 6, 7, 11

Sorting ka matlab hota hai array ko ascending ya descending order m arrange

karna

Generally hum ascending order me array ko arrande karte hai

Selection sort me har step me smallest element select karke usko proper position

pe set kiya jata hai

Jese ki image me show ho rha hai har step me smallest element search krke use

proper position pe set kiya jaa rha hai

void selection_sort (int A[], int n) {
 // temporary variable to store the position of minimum element
//minimum naam ka variable har step me minimum variable ko store karega

 int minimum;

 // reduces the effective size of the array by one in each iteration.

 for(int i = 0; i < n-1 ; i++) {

 // assuming the first element to be the minimum of the unsorted array .
 minimum = i ;

 // gives the effective size of the unsorted array .

 for(int j = i+1; j < n ; j++) {
 if(A[j] < A[minimum]) { //finds the minimum element
 minimum = j ;
 }
 }
 // putting minimum element on its proper position.
 swap (A[minimum], A[i]) ;
 }
 }

Bubble Sort

Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping
the adjacent elements if they are in wrong order.

Example:
First Pass:

(5 1 4 2 8) –> (1 5 4 2 8), Here, algorithm compares the first two elements, and
swaps since 5 > 1.
(1 5 4 2 8) –> (1 4 5 2 8), Swap since 5 > 4
(1 4 5 2 8) –> (1 4 2 5 8), Swap since 5 > 2
(1 4 2 5 8) –> (1 4 2 5 8), Now, since these elements are already in order (8 > 5),
algorithm does not swap them.
Second Pass:
(1 4 2 5 8) –> (1 4 2 5 8)
(1 4 2 5 8) –> (1 2 4 5 8), Swap since 4 > 2
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)
Now, the array is already sorted, but our algorithm does not know if it is
completed. The algorithm needs one whole pass without any swap to know it is
sorted.
Third Pass:
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)
(1 2 4 5 8) –> (1 2 4 5 8)

void bubble_sort(int A[], int n) {
 int temp;
 for(int k = 0; k< n-1; k++) {
 // (n-k-1) is for ignoring comparisons of elements which have already been
compared in earlier iterations

 for(int i = 0; i < n-k-1; i++) {
 if(A[i] > A[i+1]) {
 // here swapping of positions is being done.
 temp = A[i];
 A[i] = A[i+1];
 A[i + 1] = temp;
 }
 }
 }
}

Merge Sort

Merge Sort is a Divide and Conquer algorithm. It divides input array in two

halves, calls itself for the two halves and then merges the two sorted halves. The

merge() function is used for merging two halves. The merge(arr, l, m, r) is key

process that assumes that arr[l..m] and arr[m+1..r] are sorted and merges the two

sorted sub-arrays into one.

MergeSort(arr[], l, r)
If r > l
 1. Find the middle point to divide the array into two halves:
 middle m = (l+r)/2
 2. Call mergeSort for first half:
 Call mergeSort(arr, l, m)
 3. Call mergeSort for second half:

https://www.geeksforgeeks.org/divide-and-conquer-introduction/

 Call mergeSort(arr, m+1, r)
 4. Merge the two halves sorted in step 2 and 3:
 Call merge(arr, l, m, r)

The following diagram from wikipedia shows the complete merge sort

process for an example array {38, 27, 43, 3, 9, 82, 10}. If we take a closer look at

the diagram, we can see that the array is recursively divided in two halves till the

size becomes 1. Once the size becomes 1, the merge processes comes into action

and starts merging arrays back till the complete array is merged.

http://en.wikipedia.org/wiki/File:Merge_sort_algorithm_diagram.svg

Tree Sort

Tree sort is a sorting algorithm that is based on Binary Search Tree data structure.
It first creates a binary search tree from the elements of the input list or array and
then performs an in-order traversal on the created binary search tree to get the
elements in sorted order.

Algorithm:
Step 1: Take the elements input in an array.

Step 2: Create a Binary search tree by inserting data items from the array into the

 binary search tree.

Step 3: Perform in-order traversal on the tree to get the elements in sorted order.

For example follow the video link

https://www.youtube.com/watch?v=n2MLjGeK7qA

Radix Sort

Radix sort is a sorting technique that sorts the elements by first grouping the

individual digits of same place value. Then, sort the elements according to their

increasing/decreasing order.

Suppose, we have an array of 8 elements. First, we will sort elements based on

the value of the unit place. Then, we will sort elements based on the value of the

tenth place. This process goes on until the last significant place.

Let the initial array be [121, 432, 564, 23, 1, 45, 788]. It is sorted according

to radix sort as shown in the figure below.

http://quiz.geeksforgeeks.org/binary-search-tree-set-1-search-and-insertion/
https://www.youtube.com/watch?v=n2MLjGeK7qA

FOR EXAMPLE VISIT

https://www.youtube.com/watch?v=XiuSW_mEn7g

Quick Sort

It is also called partition-exchange sort. This algorithm divides the list into three
main parts:

1. Elements less than the Pivot element

2. Pivot element(Central element)

3. Elements greater than the pivot element

Pivot element can be any element from the array, it can be the first element, the
last element or any random element. In this tutorial, we will take the rightmost
element or the last element as pivot.

https://www.youtube.com/watch?v=XiuSW_mEn7g

For example: In the array {52, 37, 63, 14, 17, 8, 6, 25}, we take 25 as pivot. So
after the first pass, the list will be changed like this.

{6 8 17 14 25 63 37 52}

Hence after the first pass, pivot will be set at its position, with all the

elements smaller to it on its left and all the elements larger than to its right.

Now 6 8 17 14 and 63 37 52 are considered as two separate sunarrays, and same

recursive logic will be applied on them, and we will keep doing this until the

complete array is sorted.

Following are the steps involved in quick sort algorithm:

1. After selecting an element as pivot, which is the last index of the array in

our case, we divide the array for the first time.

2. In quick sort, we call this partitioning. It is not simple breaking down of

array into 2 subarrays, but in case of partitioning, the array elements are so

positioned that all the elements smaller than the pivot will be on the left

side of the pivot and all the elements greater than the pivot will be on the

right side of it.

3. And the pivot element will be at its final sorted position.

4. The elements to the left and right, may not be sorted.

5. Then we pick subarrays, elements on the left of pivot and elements on the

right of pivot, and we perform partitioning on them by choosing a pivot in

the subarrays.

Let's consider an array with values {9, 7, 5, 11, 12, 2, 14, 3, 10, 6}

Below, we have a pictorial representation of how quick sort will sort the given
array.

In step 1, we select the last element as the pivot, which is 6 in this case, and call
for partitioning, hence re-arranging the array in such a way that 6 will be placed in
its final position and to its left will be all the elements less than it and to its right,
we will have all the elements greater than it.

Then we pick the subarray on the left and the subarray on the right and select
a pivot for them, in the above diagram, we chose 3 as pivot for the left subarray
and 11 as pivot for the right subarray.

And we again call for partitioning.

